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Abstract

The present study was motivated to analyze the complex flow field involving gaseous
oxygen (GOX) flow in a relief valve (RV). The 9391 RV, pictured in Figure 1, was combined
with the pilot valve to regulate the actuation pressure of the main valve system. During a
high-pressure flow test at Marshall Space Flight Center (MSFC) the valve system developed
a resonance chatter, which destroyed most of the valve body. Figures 2-4 show the valve body
before and after accident. It was understood that the subject RV has never been operated at 5500
psia. In order to fully understand the flow behavior in the RV, a computational fluid dynamics
(CFD) analysis is carried out to investigate the side load across the piston sleeve and the
erosion patterns resulting from flow distribution around piston/nozzle interface.

Grid Topology

The safety RV consists of a main cylinder and a piston, with a smaller diameter inlet.
An intersection technique was developed to model the piston-cylinder configureation (Figure 5).
To simplify the geometry, the diameter of the cylinder is kept constant.

An O-type grid in the axial plane was initially considered for this geometry.
However, it would become very difficult to generate grid lines around the piston on the upper
part of the main cylinder, if not impossible. H-type grid was then chosen to model this internal
flow geometry. The main cylinder was cut into half at the plane of symmetry to reduce the size
of domain. It was again cut into halves at the bottom face of the piston to divide the
computational domain into upper part and lower part. To model the field geometry, the
descritization was carried out into five-block zonal grid; the inlet itself formed a block, the
lower part of the main cylinder formed another block, and the upper part of the main cylinder
was cut into 3 more blocks. The 5-block grid is shown in Figures 6-7. Compared to the original
O-type grid, this H-type grid topology greatly reduced the grid distortion, especially near the
piston .

Grid Generation

GENIE++ (Ref. 1-3), a general purpose three-dimensional grid generation package, was
used to generate the grid for this geometry. GENIE++ is the Mississippi State University
updated version of INGRID (Ref. 4-5) developed by Amold Engineering Development Center
(AEDQ).

In order to perform the surface intersections of the piston, as well as the inlet, with the
main cylinder, an intersection algorithm with Newton-Ralphson method was used to obtain
the intersection curves. Weighted transfinite interpolation (Weighted TFI) (Ref. 2) algorithm
is used to generate the algebraic grid. Weighted TFI can be formulated as uniform TFI with grid
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distribution mesh, where the grid distribution mesh is obtained by performing uniform TFI on
normalized arc length distribution on associated boundaries (or surfaces in volume grid).

Since the selected grid topology reduced the distortion of grid lines, the resulting
algebraic grid was very satisfactory, and no elliptic smoothing was performed for the present
computation. However, for future grid-dependent study, elliptic solver will be applied to
refine the local grids while maintaining a packed, viscous grid on the surface.

Governing Equations and Computational Scheme

The present numerical simulation uses a non-staggered grid, pressure based transport
equation solver with an extended version of two-equation k-¢ turbulence model. While the
computer code has all-speed capability for both compressible and incompressible flows, the
present study only uses the compressible feature. The basic equations employed to describe the
momentum and heat transfer in the computational domain are the three-dimensional Reynolds-
averaged transport equations. To solve the system of coupled nonlinear partial differential
equations, it uses finite difference approximations to establish a system of linearized algebraic
equations. An adaptive upwinding scheme is utilized to model the convective terms of the
momentum, energy and continuity equations, which is based on the second and fourth order
central differencing with artificial dissipation. Discretization of viscous fluxes and source
terms uses a second-order central difference approximation. For velocity-pressure coupling, the
present solution procedure employs pressure-based, predictor followed by multi-corrector
approach. Details of the present numerical methodology are given by Wang and Chen (Ref. 6).

Due to symmetry, the computational domain occupies only the front half of the RV.
Along all solid walls, no-slip condition is applied for velocities, and temperature is assumed
constant. For near-wall turbulence treatment, it uses a wall function with modified flux source
and a velocity profile capable of providing a smooth transition between logarithmic law-of-
wall and linear variation in viscous sublayer. Such a treatment significantly reduces the flux
dependence on the near-wall spacing. The inlet conditions are fully developed profiles for
velocities and turbulence parameters, and the outlet conditions satisfy the conservation of mass.

Result and Discussion

The preliminary computations have been performed to simulate the flow field of GOX
in the 9391 RV at 5500 psia and 1000° R. Results indicated no viscous heating due to low
temperature gradients near the piston surface (Figure 8). The surface pressure contours in Figure
9 also indicated an insignificant side load across the piston sleeve. The force obtained from
integrating all pressure points around the piston surface, from the bottom up to the piston sleeve
is found to be only 70 Ibf, under this adverse condition. The velocity vectors, magnitude, and
Mach contours are shown in Figures 10-12, respectively. Finally, the vortex formations in
Figure 13-14 predicts reasonable erosion patterns in the gap between the cylinder elbow and the
bottom of the piston. Evidently these patterns are in agreement with the damaged hardware
which indicates clear signs of burns and scratches near the piston/throat region.
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Figure 1.
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Figure 10. Velocity vectors
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Figure 11. Velocity contours
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Figure 13. Particle tracing
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